

Modeling Methodology for Smart Manufacturing

Peter Denno
Systems Integration Division

Where does the fault originate?

- Misjudged operating environment?
- Maintenance?
- Materials?
- Manufacturing process?

Example: Replace the "consultant paradigm" with

embedded analytical capability

Impediments to **Operational Performance**

- Poor Manufacturability
- Unavailability of production resources
- Variation in component quality
- Variation in demand for products
- Many product configurations
- Engineering change of product
- Unavailability of components
- Obsolescence of components
- Obsolescence of finished goods
- Integrating new component technology
- Integrating new production processes
- Integrating new materials
- Integrating new equipment
- Equipment maintenance
- Equipment anomalies
- Equipment incompatibility
- Change in cost of logistics
- Tooling change
- Labor shortage
- Strikes
- Cyber-attacks

Model composition

- the act of combining information from multiple disparate sources so as to enable inference that is not possible from the sources individually.
 - Related terms: data fusion, model integration, semantic interoperability, more comprehensive representation

- disparate sources = sources differing in viewpoint, structure, and upper ontology
- inference = a deductive, inductive, or abductive process.
 (quantitative or qualitative)

The diverse usage patterns and characteristics of model composition problems

Usage	→
Pattern	,

"City planners" (planned composition)

"Paratroopers" (dynamic composition)

Control:

Extensive, continuous

few

Objectives:

many, interrelated circumspect,

buy as needed

system"

vague at first, non-monotonic,

Knowledge:

Projects come and go, the

complete on time, or die trying

Time:

job will always be there on-going

allocated once

dynamic, learning

Money: Relation to system:

Always "above the

become part of system

"Ontology Integration" **Systems Empirically-Projects Engineering** based process (mature product line) modeling **Enterprise Systems Manufacturability Modeling Engineering Analysis** (new product) Technologies Metamodels / DSLs **Integration** Component Schema

Surrogate Models

Spectrum of composition usage patterns

ity Planners Example

composition **Contract-based** Design UML/ Hets **SysML**

Libraries

Modelica

Planned

AP210

Networked Engineering Notebooks

Eclipse EMF/ Sirius

Dynamic

composition

Technical Strategy = Composition Pattern + Method of Verification

- Composition Pattern
 - Service composition
 - Viewpoint ontologies + merging
 - Lumped parameters + ports
 - Object-oriented
 - Contract-based design
 - Hierarchical controller + plant
- Methods of Verification
 - Solvers / Reasoners (Axiomatic, SAT, SMT)
 - Formal by design (e.g. rewriting)
 - Traditional SE system validation

Networked Engineering Notebooks

In [25]: ereps.assert predictive('Eqn1',density fit)

Summary

- Various relevant notions of composition
- Various technologies fit for purpose
- Notebook technology very promising for "embedded analytical capability."
- NIST is both helping to use notebooks and developing the science of composition.
- NIST is contributing to work to enable verification, with potential for standardization.